Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis

Author:

Delgado R. L.,Dobado A.,Espriu D.,Garcia-Garcia C.ORCID,Herrero M. J.,Marcano X.ORCID,Sanz-Cillero J. J.ORCID

Abstract

Abstract In the present work we study the production of vector resonances at the LHC by means of the vector boson scattering WZWZ and explore the sensitivities to these resonances for the expected future LHC luminosities. We are assuming that these vector resonances are generated dynamically from the self interactions of the longitudinal gauge bosons, W L and Z L , and work under the framework of the electroweak chiral Lagrangian to describe in a model independent way the supposedly strong dynamics of these modes. The properties of the vector resonances, mass, width and couplings to the W and Z gauge bosons are derived from the inverse amplitude method approach. We implement all these features into a single model, the IAM-MC, adapted for MonteCarlo, built in a Lagrangian language in terms of the electroweak chiral Lagrangian and a chiral Lagrangian for the vector resonances, which mimics the resonant behavior of the IAM and provides unitary amplitudes. The model has been implemented in MadGraph, allowing us to perform a realistic study of the signal versus background events at the LHC. In particular, we have focused our study on the ppWZjj type of events, discussing first on the potential of the hadronic and semileptonic channels of the final WZ, and next exploring in more detail the most clear signals. These are provided by the leptonic decays of the gauge bosons, leading to a final state with 1 + 1 2 + νjj,  = e, μ, having a very distinctive signature, and showing clearly the emergence of the resonances with masses in the range of 1.5–2.5 TeV, which we have explored.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference83 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3