Author:
Lashkari Nima,Liu Hong,Rajagopal Srivatsan
Abstract
Abstract
In various contexts in mathematical physics, such as out-of-equilibrium physics and the asymptotic information theory of many-body quantum systems, one needs to compute the logarithm of a positive unbounded operator. Examples include the von Neumann entropy of a density matrix and the flow of operators with the modular Hamiltonian in the Tomita-Takesaki theory. Often, one encounters the situation where the operator under consideration, which we denote by ∆, can be related by a perturbative series to another operator ∆0, whose logarithm is known. We set up a perturbation theory for the logarithm log ∆. It turns out that the terms in the series possess a remarkable algebraic structure, which enables us to write them in the form of nested commutators plus some “contact terms”.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics