Abstract
Abstract
The strong CP problem can be solved if the laws of nature are invariant under a space-time parity exchanging the Standard Model with its mirror copy. We review and extend different realizations of this idea with the aim of discussing Dark Matter, neutrino physics, leptogenesis and collider physics within the same context. In the minimal realization of ref. [1] the mirror world contains a massless dark photon, which leads to a rather interesting cosmology. Mirror electrons reproduce the dark matter abundance for masses between 500–1000 GeV with traces of strongly interacting dark matter. This scenario also predicts deviations from cold dark matter, sizable ∆Neff and colored states in the TeV range that will be tested in a variety of upcoming experiments. We also explore scenarios where the mirror photon is massive and the mirror particles are charged under ordinary electromagnetism with very different phenomenology. We also show that, for the measured values of the SM parameters, the Higgs effective potential can give rise to a second minimum at large field value as required to break spontaneously the parity symmetry.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference48 articles.
1. Q. Bonnefoy, L. Hall, C.A. Manzari and C. Scherb, A Colorful Mirror Solution to the Strong CP Problem, arXiv:2303.06156 [INSPIRE].
2. L. Di Luzio, M. Giannotti, E. Nardi and L. Visinelli, The landscape of QCD axion models, Phys. Rept. 870 (2020) 1 [arXiv:2003.01100] [INSPIRE].
3. A.E. Nelson, Naturally Weak CP Violation, Phys. Lett. B 136 (1984) 387 [INSPIRE].
4. S.M. Barr, Solving the Strong CP Problem Without the Peccei-Quinn Symmetry, Phys. Rev. Lett. 53 (1984) 329 [INSPIRE].
5. K.S. Babu and R.N. Mohapatra, A Solution to the Strong CP Problem Without an Axion, Phys. Rev. D 41 (1990) 1286 [INSPIRE].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献