Thermodynamics and transport of holographic nodal line semimetals

Author:

Rodgers RonnieORCID,Mauri Enea,Gürsoy Umut,Stoof Henk T.C.

Abstract

Abstract We study various thermodynamic and transport properties of a holographic model of a nodal line semimetal (NLSM) at finite temperature, including the quantum phase transition to a topologically trivial phase, with Dirac semimetal-like conductivity. At zero temperature, composite fermion spectral functions obtained from holography are known to exhibit multiple Fermi surfaces. Similarly, for the holographic NLSM we observe multiple nodal lines instead of just one. We show, however, that as the temperature is raised these nodal lines broaden and disappear into the continuum one by one, so there is a finite range of temperatures for which there is only a single nodal line visible in the spectrum. We compute several transport coefficients in the holographic NLSM as a function of temperature, namely the charge and thermal conductivities, and the shear viscosities. By adding a new non-linear coupling to the model we are able to control the low frequency limit of the electrical conductivity in the direction orthogonal to the plane of the nodal line, allowing us to better match the conductivity of real NLSMs. The boundary quantum field theory is anisotropic and therefore has explicitly broken Lorentz invariance, which leads to a stress tensor that is not symmetric. This has important consequences for the energy and momentum transport: the thermal conductivity at vanishing charge density is not simply fixed by a Ward identity, and there are a much larger number of independent shear viscosities than in a Lorentz-invariant system.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3