Gauge-invariant observables, gravitational dressings, and holography in AdS

Author:

Giddings Steven B.,Kinsella Alex

Abstract

Abstract This paper explores construction of gauge (diffeomorphism)-invariant observables in anti de Sitter (AdS) space and the related question of how to find a “holographic map” providing a quantum equivalence to a boundary theory. Observables are constructed perturbatively to leading order in the gravitational coupling by gravitationally dressing local field theory operators in order to solve the gravitational constraints. Many such dressings are allowed and two are explicitly examined, corresponding to a gravitational line and to a Coulomb field; these also reveal an apparent role for more general boundary conditions than considered previously. The observables obey a nonlocal algebra, and we derive explicit expressions for the boundary generators of the SO(D-1,2) AdS isometries that act on them. We examine arguments that gravity explains holography through the role of such a boundary Hamiltonian. Our leading-order gravitational construction reveals some questions regarding how these arguments work, and indeed construction of such a holographic map appears to require solution of the non-perturbative generalization of the bulk constraint equations.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perturbative quantum evolution of the gravitational state and dressing in general backgrounds;Physical Review D;2024-07-16

2. The dressing field method for diffeomorphisms: a relational framework;Journal of Physics A: Mathematical and Theoretical;2024-07-12

3. Subregion independence in gravity;Journal of High Energy Physics;2024-05-28

4. Holography and localization of information in quantum gravity;Journal of High Energy Physics;2024-05-23

5. An observable in Classical Pure AdS3 Gravity: the twist along a geodesic;Journal of High Energy Physics;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3