Dark moments for the Standard Model?

Author:

Rizzo Thomas G.

Abstract

Abstract If dark matter (DM) interacts with the Standard Model (SM) via the kinetic mixing (KM) portal, it necessitates the existence of portal matter (PM) particles which carry both dark and SM quantum numbers that will appear in vacuum polarization-like loop graphs. In addition to the familiar ∼ eϵQ strength, QED-like interaction for the dark photon (DP), in some setups different loop graphs of these PM states can also induce other coupling structures for the SM fermions that may come to dominate in at least some regions of parameter space regions and which can take the form of ‘dark’ moments, e.g., magnetic dipole-type interactions in the IR, associated with a large mass scale, Λ. In this paper, motivated by a simple toy model, we perform a phenomenological investigation of a possible loop-induced dark magnetic dipole moment for SM fermions, in particular, for the electron. We show that at the phenomenological level such a scenario can not only be made compatible with existing experimental constraints for a significant range of correlated values for Λ and the dark U(1)D gauge coupling, gD, but can also lead to quantitatively different signatures once the DP is discovered. In this setup, assuming complex scalar DM to satisfy CMB constraints, parameter space regions where the DP decays invisibly are found to be somewhat preferred if PM mass limits from direct searches at the LHC and our toy model setup are all taken seriously. High precision searches for, or measurements of, the e+eγ + DP process at Belle II are shown to provide some of the strongest future constraints on this scenario.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3