Abstract
Abstract
We construct wormholes supported by axion flux in the presence of a positive cosmological constant. The solutions describe compact, one-handle bodies colloquially known as kettlebell geometries. The wormholes are perturbatively stable, but regularity of the Euclidean geometry implies an upper bound on the axion flux. Viewed as no-boundary saddle points, wormholes are suppressed relative to the round sphere. The symmetric kettlebell with maximal axion density has vanishing Euclidean action. Continuing into the Lorentzian across the equator, the solutions describe two expanding branches of de Sitter space filled with an axion field that rapidly dilutes and which are connected by a quantum bounce across which the arrow of time reverses.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference27 articles.
1. S.R. Coleman, Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence, Nucl. Phys. B 307 (1988) 867 [INSPIRE].
2. G.V. Lavrelashvili, V.A. Rubakov and P.G. Tinyakov, Disruption of Quantum Coherence upon a Change in Spatial Topology in Quantum Gravity, JETP Lett. 46 (1987) 167 [INSPIRE].
3. A. Hebecker, T. Mikhail and P. Soler, Euclidean wormholes, baby universes, and their impact on particle physics and cosmology, Front. Astron. Space Sci. 5 (2018) 35 [arXiv:1807.00824] [INSPIRE].
4. J. McNamara and C. Vafa, Cobordism Classes and the Swampland, arXiv:1909.10355 [INSPIRE].
5. E. Bergshoeff et al., Non-extremal instantons and wormholes in string theory, Fortsch. Phys. 53 (2005) 990 [hep-th/0412183] [INSPIRE].