Anomalous dimensions from crossing kernels

Author:

Sleight Charlotte,Taronna Massimo

Abstract

Abstract In this note we consider the problem of extracting the corrections to CFT data induced by the exchange of a primary operator and its descendents in the crossed channel. We show how those corrections which are analytic in spin can be systematically extracted from crossing kernels. To this end, we underline a connection between: Wilson polynomials (which naturally appear when considering the crossing kernels given recently in arXiv:1804.09334), the spectral integral in the conformal partial wave expansion, and Wilson functions. Using this connection, we determine closed form expressions for the OPE data when the external operators in 4pt correlation functions have spins J 1-J 2-0-0, in particular the anomalous dimensions of double-twist operators of the type $$ {\left[{\mathcal{O}}_{J_1}{\mathcal{O}}_{J_2}\right]}_{n,\ell } $$ O J 1 O J 2 n , in d dimensions and for both leading (n = 0) and sub-leading (n ≠ 0) twist. The OPE data are expressed in terms of Wilson functions, which naturally appear as a spectral integral of a Wilson polynomial. As a consequence, our expressions are manifestly analytic in spin and are valid up to finite spin. We present some applications to CFTs with slightly broken higher-spin symmetry. The Mellin Barnes integral representation for 6j symbols of the conformal group in general d and its relation with the crossing kernels are also discussed.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3