Analytical estimation of the signal to noise ratio efficiency in axion dark matter searches using a Savitzky-Golay filter

Author:

Yi A. K.,Ahn S.,Ko B. R.ORCID,Semertzidis Y. K.

Abstract

Abstract The signal to noise ratio efficiency ϵSNR in axion dark matter searches has been estimated using large-statistic simulation data reflecting the background information and the expected axion signal power obtained from a real experiment. This usually requires a lot of computing time even with the assistance of powerful computing resources. Employing a Savitzky-Golay filter for background subtraction, in this work, we estimated a fully analytical ϵSNR without relying on large-statistic simulation data, but only with an arbitrary axion mass and the relevant signal shape information. Hence, our work can provide ϵSNR using minimal computing time and resources prior to the acquisition of experimental data, without the detailed information that has to be obtained from real experiments. Axion haloscope searches have been observing the coincidence that the frequency independent scale factor ξ is approximately consistent with the ϵSNR. This was confirmed analytically in this work, when the window length of the Savitzky-Golay filter is reasonably wide enough, i.e., at least 5 times the signal window.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3