Taming the landscape of effective theories

Author:

Grimm Thomas W.

Abstract

Abstract We introduce a generalized notion of finiteness that provides a structural principle for the set of effective theories that can be consistently coupled to quantum gravity. More concretely, we propose a Tameness Conjecture that states that all valid effective theories are labelled by a definable parameter space and must have scalar field spaces and coupling functions that are definable using the tame geometry built from an o-minimal structure. We give a brief introduction to tame geometry and describe how it restricts sets, manifolds, and functions. We then collect evidence for the Tameness Conjecture by studying various effective theories arising from string theory compactifications by using some recent advances in tame geometry. In particular, we will exploit the fact that coset spaces and period mappings are definable in an o-minimal structure and argue for non-trivial tameness results in higher-supersymmetric theories and in Calabi-Yau compactifications. As strongest evidence for the Tameness Conjecture over a discrete parameter space, we then discuss a recent theorem stating that the locus of self-dual flux vacua of F-theory admits a tame geometry even if one allows for any flux choice satisfying the tadpole constraint. This result implies the finiteness of self-dual flux vacua in F-theory.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. String cosmology: From the early universe to today;Physics Reports;2024-04

2. Flux vacua of the mirror octic;Journal of High Energy Physics;2024-01-25

3. JAXVacua — a framework for sampling string vacua;Journal of High Energy Physics;2023-12-20

4. Bi-Yang-Baxter models and Sl(2)-orbits;Journal of High Energy Physics;2023-11-20

5. Freely acting orbifolds of type IIB string theory on T5;Journal of High Energy Physics;2023-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3