Visualization and efficient generation of constrained high-dimensional theoretical parameter spaces

Author:

Baretz Jason,Carrara Nicholas,Hollingsworth Jacob,Whiteson Daniel

Abstract

Abstract We describe a set of novel methods for efficiently sampling high-dimensional parameter spaces of physical theories defined at high energies, but constrained by experimental measurements made at lower energies. Often, theoretical models such as supersymmetry are defined by many parameters, $$ \mathcal{O} $$ O (10 − 100), expressed at high energies, while relevant experimental constraints are often defined at much lower energies, preventing them from directly ruling out portions of the space. Instead, the low-energy constraints define a complex, potentially non-contiguous subspace of the theory parameters. Naive scanning of the theory space for points which satisfy the low-energy constraints is hopelessly inefficient due to the high dimensionality, and the inverse problem is considered intractable. As a result, many theoretical spaces remain under-explored. We introduce a class of modified generative autoencoders, which attack this problem by mapping the high-dimensional parameter space to a structured low-dimensional latent space, allowing for easy visualization and efficient generation of theory points which satisfy experimental constraints. An extension without dimensional compression, which focuses on limiting potential information loss, is also introduced.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3