Author:
Melby-Thompson Charles M.,Schmidt-Colinet Cornelius
Abstract
Abstract
We introduce and study renormalization group interfaces between two holographic conformal theories which are related by deformation by a scalar double trace operator. At leading order in the 1/N expansion, we derive expressions for the two point correlation functions of the scalar, as well as the spectrum of operators living on the interface. We also compute the interface contribution to the sphere partition function, which in two dimensions gives the boundary g factor. Checks of our proposal include reproducing the g factor and some defect overlap coefficients of Gaiotto’s RG interfaces at large N , and the two-point correlation function whenever conformal perturbation theory is valid.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference58 articles.
1. I. Brunner and D. Roggenkamp, Defects and bulk perturbations of boundary Landau-Ginzburg orbifolds, JHEP 04 (2008) 001 [arXiv:0712.0188] [INSPIRE].
2. A. Konechny and C. Schmidt-Colinet, Entropy of conformal perturbation defects, J. Phys. A 47 (2014) 485401 [arXiv:1407.6444] [INSPIRE].
3. I. Brunner and C. Schmidt-Colinet, Reflection and transmission of conformal perturbation defects, J. Phys. A 49 (2016) 195401 [arXiv:1508.04350] [INSPIRE].
4. F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and Interface CFTs from the Conformal Bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].
5. D. Gaiotto, Domain Walls for Two-Dimensional Renormalization Group Flows, JHEP 12 (2012) 103 [arXiv:1201.0767] [INSPIRE].
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献