Flavor physics in the multi-Higgs doublet models induced by the left-right symmetry

Author:

Iguro Syuhei,Muramatsu Yu,Omura Yuji,Shigekami Yoshihiro

Abstract

Abstract In this paper, we discuss the multi-Higgs doublet models, that could be effectively induced by the extended Standard Model (SM). In particular, we focus on the phenomenology in the supersymmetric model with left-right (LR) symmetry, where the down-type and the up-type Yukawa couplings are unified and the Yukawa coupling matrices are expected to be hermitian. In this model, several Higgs doublets are introduced to realize the realistic fermion mass matrices, and the heavy Higgs doublets have flavor changing couplings with quarks and leptons. The LR symmetry is assumed to break down at high energy to realize the Type-I seesaw mechanism. The supersymmetry breaking scale is expected to be around 100 TeV to achieve the 125 GeV Higgs. In such a setup, the flavor-dependent interaction of the Higgs fields becomes sizable, so that we especially discuss the flavor physics induced by the heavy Higgs fields in our work. Our prediction depends on the structure of neutrinos, e.g., the neutrino mass ordering. We demonstrate how the flavor structure of the SM affects the flavor violating couplings. In our analysis, we mainly focus on the four-fermi interaction induced by the scalar exchanging, and we propose a simple parameterization for the coefficients. Then, we find the correlations among the flavor observables and, for instance, see that our prediction for the μ → 3e process could be covered by the future experiment, in one case where the neutrino mass hierarchy is normal.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3