Harvesting correlations from vacuum quantum fields in the presence of a reflecting boundary

Author:

Liu Zhihong,Zhang Jialin,Yu Hongwei

Abstract

Abstract We explore correlations harvesting by two static detectors locally interacting with vacuum massless scalar fields in the presence of an infinite perfectly reflecting boundary. We study the phenomena of mutual information harvesting and entanglement harvesting for two detector-boundary alignments, i.e., parallel-to-boundary and orthogonal-to-boundary alignments. Our results show that the presence of the boundary generally inhibits mutual information harvesting relative to that in flat spacetime without any boundaries. In contrast, the boundary may play a doubled-edged role in entanglement harvesting, i.e., inhibiting entanglement harvesting in the near zone of the boundary while assisting it in the far zone of the boundary. Moreover, there exists an optimal detector energy gap difference between two nonidentical detectors that makes such detectors advantageous in correlations harvesting as long as the interdetector separation is large enough. The value of the optimal detector energy gap difference depends on both the interdetector separation and the detector-to-boundary distance. A comparison of the correlations harvesting in two different alignments shows that although correlations harvesting share qualitatively the same properties, they also display quantitative differences in that the detectors in orthogonal-to-boundary alignment always harvest comparatively more mutual information than the parallel-to-boundary ones, while they harvest comparatively more entanglement only near the boundary.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3