De Finettian Logics of Indicative Conditionals Part II: Proof Theory and Algebraic Semantics

Author:

Égré PaulORCID,Rossi LorenzoORCID,Sprenger JanORCID

Abstract

AbstractIn Part I of this paper, we identified and compared various schemes for trivalent truth conditions for indicative conditionals, most notably the proposals by de Finetti (1936) and Reichenbach (1935, 1944) on the one hand, and by Cooper (Inquiry, 11, 295–320, 1968) and Cantwell (Notre Dame Journal of Formal Logic, 49, 245–260, 2008) on the other. Here we provide the proof theory for the resulting logics and , using tableau calculi and sequent calculi, and proving soundness and completeness results. Then we turn to the algebraic semantics, where both logics have substantive limitations: allows for algebraic completeness, but not for the construction of a canonical model, while fails the construction of a Lindenbaum-Tarski algebra. With these results in mind, we draw up the balance and sketch future research projects.

Publisher

Springer Science and Business Media LLC

Subject

Philosophy

Reference41 articles.

1. Adams, E.W. (1975). The logic of conditionals. Dordrecht: Reidel.

2. Asenjo, F.G. (1966). A calculus of antinomies. Notre Dame Journal of Formal Logic, 16, 103–105.

3. Baaz, M., Fermüller, C., & Zach, R. (1992). Dual systems of sequents and tableaux for many-valued logics. Technical Report TUW-E185.2-BFZ.2–92.

4. Baaz, M., Fermüller, C., & Zach, R. (1993). Systematic construction of natural deduction systems for many-valued logics: Extended report. Technical Report TUW- E185.2-BFZ.1–93.

5. Baratgin, J., Over, D., & Politzer, G. (2013). Uncertainty and the de Finetti tables. Thinking & Reasoning, 19, 308–328.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dummett’s Theory of Truth as a Source of Connexivity;Studia Logica;2024-09-02

2. A Simple Way to Overcome Hyperconnexivity;Studia Logica;2023-07-05

3. Gibbardian Collapse and Trivalent Conditionals;Palgrave Studies in Pragmatics, Language and Cognition;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3