A Minimal Probability Space for Conditionals

Author:

Wójtowicz AnnaORCID,Wójtowicz KrzysztofORCID

Abstract

Abstract One of central problems in the theory of conditionals is the construction of a probability space, where conditionals can be interpreted as events and assigned probabilities. The problem has been given a technical formulation by van Fraassen (23), who also discussed in great detail the solution in the form of Stalnaker Bernoulli spaces. These spaces are very complex – they have the cardinality of the continuum, even if the language is finite. A natural question is, therefore, whether a technically simpler (in particular finite) partial construction can be given. In the paper we provide a new solution to the problem. We show how to construct a finite probability space $$\mathrm {S}^\#=\left(\mathrm\Omega^\#,\mathrm\Sigma^\#,\mathrm P^\#\right)$$ S # = Ω # , Σ # , P # in which simple conditionals and their Boolean combinations can be interpreted. The structure is minimal in terms of cardinality within a certain, naturally defined class of models – an interesting side-effect is an estimate of the number of non-equivalent propositions in the conditional language. We demand that the structure satisfy certain natural assumptions concerning the logic and semantics of conditionals and also that it satisfy PCCP. The construction can be easily iterated, producing interpretations for conditionals of arbitrary complexity.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Philosophy

Reference27 articles.

1. Adams, E. W. (1965). On the logic of conditionals. Inquiry, 8, 166–197. https://doi.org/10.1080/00201746508601430

2. Adams, E. W. (1970). Subjunctive and indicative conditionals. Foundations of Language, 6, 89–94. https://doi.org/10.2307/2272204

3. Adams, E. W. (1975). The Logic of Conditionals. D. Reidel.

4. Adams, E. W. (1998). A Primer of Probability Logic. CLSI, Stanford University.

5. Egré, P., & Rott, H. (2021).The Logic of Conditionals. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2021 ed.). URL = https://plato.stanford.edu/archives/win2021/entries/logic-conditionals/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Misleading Triviality Argument in The Theory of Conditionals;Logic and Logical Philosophy;2024-05-04

2. The Question of Counterpossibles;Synthese Library;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3