One Variable Relevant Logics are S5ish

Author:

Ferenz NicholasORCID

Abstract

AbstractHere I show that the one-variable fragment of several first-order relevant logics corresponds to certain S5ish extensions of the underlying propositional relevant logic. In particular, given a fairly standard translation between modal and one-variable languages and a permuting propositional relevant logic L, a formula $$\mathcal {A}$$ A of the one-variable fragment is a theorem of LQ (QL) iff its translation is a theorem of L5 (L.5). The proof is model-theoretic. In one direction, semantics based on the Mares-Goldblatt [15] semantics for quantified L are transformed into ternary (plus two binary) relational semantics for S5-like extensions of L (for a general presentation, see Seki [26, 27]). In the other direction, a valuation is given for the full first-order relevant logic based on L into a model for a suitable S5 extension of L. I also discuss this work’s relation to finding a complete axiomatization of the constant domain, non-general frame ternary relational semantics for which RQ is incomplete [11].

Funder

Grantová Agentura České Republiky

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3