Abstract
AbstractExamples of hypotheses about the number of planets are frequently used to introduce the topic of (actual) truthlikeness but never analyzed in detail. In this paper we first deal with the truthlikeness of singular quantity hypotheses, with reference to several ‘the number of planets’ examples, such as ‘The number of planets is 10 versus 10 billion (instead of 8).’ For the relevant ratio scale of quantities we will propose two, strongly related, normalized metrics, the proportional metric and the (simplest and hence favorite) fractional metric, to express e.g. the distance from a hypothetical number to the true number of planets, i.e. the distance between quantities. We argue that they are, in view of the examples and plausible conditions of adequacy, much more appropriate, than the standardly suggested, normalized absolute difference, metric.Next we deal with disjunctive hypotheses, such as ‘The number of planets is between 7 and 10 inclusive is much more truthlike than between 1 and 10 billion inclusive.’ We compare three (clusters of) general ways of dealing with such hypotheses, one from Ilkka Niiniluoto, one from Pavel Tichý and Graham Oddie, and a trio of ways from Theo Kuipers. Using primarily the fractional metric, we conclude that all five measures can be used for expressing the distance of disjunctive hypotheses from the actual truth, that all of them have their strong and weak points, but that (the combined) one of the trio is, in view of principle and practical considerations, the most plausible measure.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献