Abstract
AbstractMany analyses of notion of metainferences in the non-transitive logic have tackled the question of whether can be identified with classical logic. In this paper, we argue that the primary analyses are overly restrictive of the notion of metainference. We offer a more elegant and tractable semantics for the strict-tolerant hierarchy based on the three-valued function for the material conditional. This semantics can be shown to easily handle the introduction of mixed inferences, i.e., inferences involving objects belonging to more than one (meta)inferential level and solves several other limitations of the hierarchies introduced by Barrio, Pailos, and Szmuc.
Funder
Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Avron, A. (1988). The semantics and proof theory of linear logic. Theoretical Computer Science, 57(2-3), 161–184.
2. Barrio, E., Rosenblatt, L., & Tajer, D. (2015). The logics of strict-tolerant logic. Journal of Philosophical Logic, 44(5), 551–571.
3. Barrio, E., Pailos, F., & Szmuc, D. (2020). A hierarchy of classical and paraconsistent logics. Journal of Philosophical Logic, 49(1), 93–120.
4. Brouwer, L.E.J (1928). Mathematik, Wissenschaft und Sprache. Monatshefte fur̈ Mathematik und Physik, 36, 153–164.
5. Brouwer, L.E.J. (1996). Mathematics, science, and language. In W. Ewald (Ed.) From Kant to Hilbert, (Vol. II pp. 1170–1185). Oxford: Oxford University Press.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sequent Calculi for First-order $$\textrm{ST}$$;Journal of Philosophical Logic;2024-07-02
2. Counterexample Sufficiency in Modifications to Strict-Tolerant Logics;2024 IEEE 54th International Symposium on Multiple-Valued Logic (ISMVL);2024-05-28
3. Semantic Closure and Classicality;Revista de Humanidades de Valparaíso;2023-10-31
4. Hierarchies of Strong Kleene Metainferential Logics;Trends in Logic;2023