Iterative solvers for Biot model under small and large deformations

Author:

Borregales Reverón Manuel AntonioORCID,Kumar Kundan,Nordbotten Jan Martin,Radu Florin Adrian

Abstract

AbstractWe consider L-scheme and Newton-based solvers for Biot model under large deformation. The mechanical deformation follows the Saint Venant-Kirchoff constitutive law. Furthermore, the fluid compressibility is assumed to be non-linear. A Lagrangian frame of reference is used to keep track of the deformation. We perform an implicit discretization in time (backward Euler) and propose two linearization schemes for solving the non-linear problems appearing within each time step: Newton’s method and L-scheme. Each linearization scheme is also presented in a monolithic and a splitting version, extending the undrained split methods to non-linear problems. The convergence of the solvers, here presented, is shown analytically for cases under small deformation and numerically for examples under large deformation. Illustrative numerical examples are presented to confirm the applicability of the schemes, in particular, for large deformation.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A fixed-stress splitting method for nonlinear poroelasticity;Engineering with Computers;2024-07-26

2. New twofold saddle-point formulations for Biot poroelasticity with porosity-dependent permeability;Results in Applied Mathematics;2024-02

3. Discrete fracture‐matrix model of poroelasticity;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-01-25

4. Mixed-dimensional poromechanical models of fractured porous media;Acta Mechanica;2022-12-04

5. Towards hybrid two‐phase modelling using linear domain decomposition;Numerical Methods for Partial Differential Equations;2022-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3