A numerical study of the additive Schwarz preconditioned exact Newton method (ASPEN) as a nonlinear preconditioner for immiscible and compositional porous media flow

Author:

Klemetsdal ØysteinORCID,Moncorgé Arthur,Møyner Olav,Lie Knut-Andreas

Abstract

AbstractDomain decomposition methods are widely used as preconditioners for Krylov subspace linear solvers. In the simulation of porous media flow there has recently been a growing interest in nonlinear preconditioning methods for Newton’s method. In this work, we perform a numerical study of a spatial additive Schwarz preconditioned exact Newton (ASPEN) method as a nonlinear preconditioner for Newton’s method applied to both fully implicit or sequential implicit schemes for simulating immiscible and compositional multiphase flow. We first review the ASPEN method and discuss how the resulting linearized global equations can be recast so that one can use standard preconditioners developed for the underlying model equations. We observe that the local fully implicit or sequential implicit updates efficiently handle the local nonlinearities, whereas long-range interactions are resolved by the global ASPEN update. The combination of the two updates leads to a very competitive algorithm. We illustrate the behavior of the algorithm for conceptual one and two-dimensional cases, as well as realistic three dimensional models. A complexity analysis demonstrates that Newton’s method with a fully implicit scheme preconditioned by ASPEN is a very robust and scalable alternative to the well-established Newton’s method for fully implicit schemes.

Funder

Total E&P

SINTEF AS

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3