Abstract
AbstractThis article investigates bypassing the inversion steps involved in a standard litho-type classification pipeline and performing the litho-type classification directly from imaged seismic data. We consider a set of deep learning methods that map the seismic data directly into litho-type classes, trained on two variants of synthetic seismic data: (i) one in which we image the seismic data using a local Radon transform to obtain angle gathers, (ii) and another in which we start from the subsurface-offset gathers, based on correlations over the seismic data. Our results indicate that this single-step approach provides a faster alternative to the established pipeline while being convincingly accurate. We observe that adding the background model as input to the deep network optimization is essential in correctly categorizing litho-types. Also, starting from the angle gathers obtained by imaging in the Radon domain is more informative than using the subsurface offset gathers as input.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献