On spatially correlated observations in importance sampling methods for subsidence estimation

Author:

Kim Samantha S. R.ORCID,Vossepoel Femke C.

Abstract

AbstractThe particle filter is a data assimilation method based on importance sampling for state and parameter estimation. We apply a particle filter in two different quasi-static experiments with models of subsidence caused by a compacting reservoir. The first model considers uncorrelated model state variables and observations, with observed subsidence resulting from a single source of strain. In the second model, subsidence is a summation of subsidence contributions from multiple sources which causes spatial dependencies and correlations in the observed subsidence field. Assimilating these correlated subsidence fields may trigger weight collapse. With synthetic tests, we show in a model of subsidence with 50 independent state variables and spatially correlated subsidence a minimum of $$\varvec{10^{13}}$$ 10 13 particles are required to have information in the posterior distribution identical to that in a model with 50 independent and spatially uncorrelated observations. Spatial correlations cause an information loss which can be quantified with mutual information. We illustrate how a stronger spatial correlation results in lower information content in the posterior and we empirically derive the required ensemble size for the importance sampling to remain effective. We furthermore illustrate how this loss of information is reflected in the log likelihood, and how this depends on the number of model state variables. Based on these empirical results, we propose criteria to evaluate the required ensemble size in data assimilation of spatially correlated observation fields.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3