Data assimilation with soft constraints (DASC) through a generalized iterative ensemble smoother

Author:

Luo XiaodongORCID,Cruz William C.

Abstract

AbstractThis work investigates an ensemble-based workflow to simultaneously handle generic, nonlinear equality and inequality constraints in reservoir data assimilation problems. The proposed workflow is built upon a recently proposed umbrella algorithm, called the generalized iterative ensemble smoother (GIES), and inherits the benefits of ensemble-based data assimilation algorithms in geoscience applications. Unlike the traditional ensemble assimilation algorithms, the proposed workflow admits cost functions beyond the form of nonlinear-least-squares, and has the potential to develop an infinite number of constrained assimilation algorithms. In the proposed workflow, we treat data assimilation with constraints as a constrained optimization problem. Instead of relying on a general-purpose numerical optimization algorithm to solve the constrained optimization problem, we derive an (approximate) closed form to iteratively update model variables, but without the need to explicitly linearize the constraint systems. The established model update formula bears similarities to that of an iterative ensemble smoother (IES). Therefore, in terms of theoretical analysis, it becomes relatively easy to transit from an ordinary IES to the proposed constrained assimilation algorithms, and in terms of practical implementation, it is also relatively straightforward to implement the proposed workflow for users who are familiar with the IES, or other conventional ensemble data assimilation algorithms like the ensemble Kalman filter (EnKF). Apart from the aforementioned features, we also develop efficient methods to handle two noticed issues that would be of practical importance for ensemble-based constrained assimilation algorithms. These issues include localization in the presence of constraints, and the (possible) high dimensionality induced by the constraint systems. We use one 2D and one 3D case studies to demonstrate the performance of the proposed workflow. In particular, the 3D example contains experiment settings close to those of real field case studies. In both case studies, the proposed workflow achieves better data assimilation performance in comparison to the choice of using an original IES algorithm. As such, the proposed workflow has the potential to further improve the efficacy of ensemble-based data assimilation in practical reservoir data assimilation problems.

Funder

The Research Council of Norway

NORCE Norwegian Research Centre AS

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3