Adaptive mesh refinement in locally conservative level set methods for multiphase fluid displacements in porous media

Author:

Singh DeepakORCID,Friis Helmer AndréORCID,Jettestuen EspenORCID,Helland Johan OlavORCID

Abstract

AbstractMultiphase flow in porous media often occurs with the formation and coalescence of fluid ganglia. Accurate predictions of such mechanisms in complex pore geometries require simulation models with local mass conservation and with the option to improve resolution in areas of interest. In this work, we incorporate patch-based, structured adaptive mesh refinement capabilities into a method for local volume conservation that describes the behaviour of disconnected fluid ganglia during level set simulations of capillary-controlled displacement in porous media. We validate the model against analytical solutions for three-phase fluid configurations in idealized pores containing gas, oil, and water, by modelling the intermediate-wet oil layers as separate domains with their volumes preserved. Both the pressures and volumes of disconnected ganglia converge to analytical values with increased refinement levels of the adaptive mesh. Favourable results from strong and weak scaling tests emphasize that the number of patches per processor and the total number of patches are important parameters for efficient parallel simulations with adaptive mesh refinement. Simulations of two-phase imbibition and three-phase gas invasion on segmented 3D images of water-wet sandstone show that adaptive mesh refinement has the highest impact on three-phase displacements, especially concerning the behaviour of the conserved, intermediate-wet phase.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3