Abstract
AbstractTrajectory data can objectively reflect the moving law of moving objects. Therefore, trajectory prediction has high application value. Hurricanes often cause incalculable losses of life and property, trajectory prediction can be an effective means to mitigate damage caused by hurricanes. With the popularization and wide application of artificial intelligence technology, from the perspective of machine learning, this paper trains a trajectory prediction model through historical trajectory data based on a long short-term memory (LSTM) network. An improved LSTM (ILSTM) trajectory prediction algorithm that improves the prediction of the simple LSTM is proposed, and the Kalman filter is used to filter the prediction results of the improved LSTM algorithm, which is called LSTM-KF. Through simulation experiments of Atlantic hurricane data from 1851 to 2016, compared to other LSTM and ILSTM algorithms, it is found that the LSTM-KF trajectory prediction algorithm has the lowest prediction error and the best prediction effect.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献