Dimensional reduction of a fractured medium for a polymer EOR model

Author:

Dugstad MartinORCID,Kumar Kundan,Pettersen Øystein

Abstract

AbstractDimensional reduction strategy is an effective approach to derive reliable conceptual models to describe flow in fractured porous media. The fracture aperture is several orders of magnitude smaller than the characteristic size (e.g., the length of the fracture) of the physical problem. We identify the aperture to length ratio as the small parameter 𝜖 with the fracture permeability scaled as an exponent of 𝜖. We consider a non-Newtonian fluid described by the Carreau model type where the viscosity is dependent on the fluid velocity. Using formal asymptotic approach, we derive a catalogue of reduced models at the vanishing limit of 𝜖. Our derivation provides new models in a hybrid-dimensional setting as well as models which exhibit two-scale behaviour. Several numerical examples confirm the theoretical derivations of the upscaled models. Moreover, we have also studied the sensitivity of the upscaled models when a particular upscaled model is used beyond its range of validity to provide additional insight.

Funder

Universitetet i Bergen

University of Bergen

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical approximation for hybrid‐dimensional flow and transport in fractured porous media;Numerical Methods for Partial Differential Equations;2023-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3