Complex nonlinear neural network prediction with IOWA layer

Author:

Hussain WalayatORCID,Merigó Jóse M.,Gil-Lafuente Jaime,Gao HonghaoORCID

Abstract

AbstractNeural network methods are widely used in business problems for prediction, clustering, and risk management to improving customer satisfaction and business outcome. The ability of a neural network to learn complex nonlinear relationship is due to its architecture that uses weight parameters to transform input data within the hidden layers. Such methods perform well in many situations where the ordering of inputs is simple. However, for a complex reordering of a decision-maker, the process is not enough to get an optimal prediction result. Moreover, existing machine learning algorithms cannot reduce computational complexity by reducing data size without losing any information. This paper proposes an induced ordered weighted averaging (IOWA) operator for the artificial neural network IOWA-ANN. The operator reorders the data according to the order-inducing variable. The proposed sorting mechanism in the neural network can handle a complex nonlinear relationship of a dataset, which results in reduced computational complexities. The proposed approach deals with the complexity of the neuron, collects the data and allows a degree of customisation of the structure. The application further extended to IGOWA and Quasi-IOWA operators. We present a numerical example in a financial decision-making process to demonstrate the approach's effectiveness in handling complex situations. This paper opens a new research area for various complex nonlinear predictions where the dataset is big enough, such as cloud QoS and IoT sensors data. The approach can be used with different machine learning, neural networks or hybrid fuzzy neural methods with other extensions of the OWA operator.

Funder

Australian Catholic University Limited

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3