Pruning trees in C-fuzzy random forest

Author:

Gadomer Łukasz,Sosnowski Zenon A.ORCID

Abstract

AbstractPruning decision trees is the way to decrease their size in order to reduce classification time and improve (or at least maintain) classification accuracy. In this paper, the idea of applying different pruning methods to C-fuzzy decision trees and Cluster–context fuzzy decision trees in C-fuzzy random forest is presented. C-fuzzy random forest is a classifier which we created and we are improving. This solution is based on fuzzy random forest and uses C-fuzzy decision trees or Cluster–context fuzzy decision trees—depending on the variant. Five pruning methods were adjusted to mentioned kind of trees and examined: Reduced Error Pruning (REP), Pessimistic Error Pruning (PEP), Minimum Error Pruning (MEP), Critical Value Pruning (CVP) and Cost-Complexity Pruning. C-fuzzy random forests with unpruned trees and trees constructed using each of these pruning methods were created. The evaluation of created forests was performed on eleven discrete decision class datasets (forest with C-fuzzy decision trees) and two continuous decision class datasets (forest with Cluster–context fuzzy decision trees). The experiments on eleven different discrete decision class datasets and two continuous decision class datasets were performed to evaluate five implemented pruning methods. Our experiments show that pruning trees in C-fuzzy random forest in general reduce computation time and improve classification accuracy. Generalizing, the best classification accuracy improvement was achieved using CVP for discrete decision class problems and REP for continuous decision class datasets, but for each dataset different pruning methods work well. The method which pruned trees the most was PEP and the fastest one was MEP. However, there is no pruning method which fits the best for all datasets—the pruning method should be chosen individually according to the given problem. There are also situations where it is better to remain trees unpruned.

Funder

Ministerstwo Nauki i Szkolnictwa Wyzszego

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3