Abstract
AbstractWe devise a variable precision floating-point arithmetic by exploiting the framework provided by the Infinity Computer. This is a computational platform implementing the Infinity Arithmetic system, a positional numeral system which can handle both infinite and infinitesimal quantities expressed using the positive and negative finite or infinite powers of the radix $${\textcircled {1}}$$
1
. The computational features offered by the Infinity Computer allow us to dynamically change the accuracy of representation and floating-point operations during the flow of a computation. When suitably implemented, this possibility turns out to be particularly advantageous when solving ill-conditioned problems. In fact, compared with a standard multi-precision arithmetic, here the accuracy is improved only when needed, thus not affecting that much the overall computational effort. An illustrative example about the solution of a nonlinear equation is also presented.
Funder
Università degli Studi di Bari Aldo Moro
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献