Author:
Sekh Arif Ahmed,Dogra Debi Prosad,Kar Samarjit,Roy Partha Pratim
Abstract
AbstractSurveillance camera usage has increased significantly for visual surveillance. Manual analysis of large video data recorded by cameras may not be feasible on a larger scale. In various applications, deep learning-guided supervised systems are used to track and identify unusual patterns. However, such systems depend on learning which may not be possible. Unsupervised methods relay on suitable features and demand cluster analysis by experts. In this paper, we propose an unsupervised trajectory clustering method referred to as t-Cluster. Our proposed method prepares indexes of object trajectories by fusing high-level interpretable features such as origin, destination, path, and deviation. Next, the clusters are fused using multi-criteria decision making and trajectories are ranked accordingly. The method is able to place abnormal patterns on the top of the list. We have evaluated our algorithm and compared it against competent baseline trajectory clustering methods applied to videos taken from publicly available benchmark datasets. We have obtained higher clustering accuracies on public datasets with significantly lesser computation overhead.
Funder
UiT The Arctic University of Norway
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献