Total edge irregularity strength for special types of square snake graphs

Author:

Salama F.ORCID,Rafat H.,Attiya H.

Abstract

AbstractOne of the extremely useful branches in graph theory is the labeling of a graph. Graph labeling plays a vital role in many fields such as database management, astronomy, coding theory, X-ray crystallography, communication network addressing and radar. A labeling of a connected simple graph $$G\left( {V,E} \right)$$ G V , E is a map that assign each element in $$G$$ G with a positive integer number. An edge irregular total $$\lambda^{\!\!\!\!\!-}$$ λ - -labeling is a map $$\beta :V\left( G \right) \cup E\left( G \right) \to \left\{ 1,2,3, \ldots ,\lambda^{\!\!\!\!\!-} \right\}$$ β : V G E G 1 , 2 , 3 , , λ - such that $$W_\beta \left( h \right) \ne W_\beta \left( z \right)$$ W β h W β z where $$W_\beta \left( h \right)$$ W β h and $$W_\beta \left( z \right)$$ W β z are weights for any two distinct edges. In this case, $$G$$ G has total edge irregularity strength (TEIS) if $$\lambda^{\!\!\!\!\!-}$$ λ - is minimum. In this paper, a new family of graphs called square snake graphs is defined and denoted by $$C_{4,n}$$ C 4 , n . Moreover, we define some related graphs of square snake graphs named double square snake graph $$D\left( {C_{4,n} } \right)$$ D C 4 , n , triple square snake graph $$T\left( {C_{4,n} } \right)$$ T C 4 , n and $$m$$ m -multiple square snake graph $$M_m \left( {C_{4,n} } \right)$$ M m C 4 , n . Finally, we determine TEIS for square snake graphs, double square snake graph, triple square snake graph and $$m$$ m -multiple square snake graph, which have many applications in coding theory and physics.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Reference31 articles.

1. Ahmad A, Bača M (2014) Total edge irregularity strength of a categorical product of two paths. Ars Combin 114:203–212

2. Ahmad A, Siddiqui MK, Afzal D (2012) On the total edge irregularity strength of zigzag graphs. Aust J Comb 54:141–149

3. Ahmad A, Arshad M, Ižaríková G (2015) Irregular labelings of helm and sun graphs. AKCE Int J Graphs Combin 12:161–168

4. Ahmad A, Siddiqui MK, Ibrahim M, Asif M (2016) On the total irregularity strength of generalized Petersen graph. Math Rep 18:197–204

5. Al-Mushayt O, Ahmad A, Siddiqui MK (2012) On the total edge irregularity strength of hexagonal grid graphs. Australas J Comb 53:263–271

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3