An intrusion detection system for wireless sensor networks using deep neural network
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s00500-021-06473-y.pdf
Reference28 articles.
1. Alaparthy VT, Morgera SD (2018) A multi-level intrusion detection system for wireless sensor networks based on immune theory. IEEE Access 6:47364–47373
2. Borkar GM, Patil LH, Hutke A (2019) A novel clustering approach and adaptive SVM classifier for intrusion detection in WSN: a data mining concept. Sustain Comput Inf Syst 23:120–135
3. Cauteruccio F, Fortino G, Vega MT (2019) Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance. Inf Fusion 52:13–30
4. Filho GPR, Villas LA, Ueyama J (2018) Towards a smarter smart home system for decision-making using wireless sensors and actuators. Comput Netw 135:54–69
5. Gavel S, Raghuvanshi AS, Tiwari S (2020) A novel density estimation based intrusion detection technique with Pearson’s divergence for wireless sensor networks. ISA Trans 111:180–191
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dynamically stabilized recurrent neural network optimized with intensified sand cat swarm optimization for intrusion detection in wireless sensor network;Computers & Security;2025-01
2. OPTIONS attack detection in WSN using Optimized Multitask Multi-Attention Residual Shrinkage Convolutional Neural Network;Knowledge-Based Systems;2024-09
3. An improved federated transfer learning model for intrusion detection in edge computing empowered wireless sensor networks;Concurrency and Computation: Practice and Experience;2024-08-15
4. Toward Deep Learning based Intrusion Detection System: A Survey;Proceedings of the 2024 6th International Conference on Big Data Engineering;2024-07-24
5. Meta‐analysis and systematic review for anomaly network intrusion detection systems: Detection methods, dataset, validation methodology, and challenges;IET Networks;2024-06-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3