Abstract
AbstractWe consider polyhedral separation of sets as a possible tool in supervised classification. In particular, we focus on the optimization model introduced by Astorino and Gaudioso (J Optim Theory Appl 112(2):265–293, 2002) and adopt its reformulation in difference of convex (DC) form. We tackle the problem by adapting the algorithm for DC programming known as DCA. We present the results of the implementation of DCA on a number of benchmark classification datasets.
Funder
Università degli Studi di Cagliari
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献