Efficient facial emotion recognition model using deep convolutional neural network and modified joint trilateral filter
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s00500-022-06804-7.pdf
Reference73 articles.
1. Agrawal A, Mittal N (2020) Using cnn for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy. Vis Comput 36(2):405–412
2. Alam M, Vidyaratne LS, Iftekharuddin KM (2018) Sparse simultaneous recurrent deep learning for robust facial expression recognition. IEEE Trans Neural Net Learn Syst 29(10):4905–4916
3. Baddar WJ, Lee S, Ro YM (2019) On-the-fly facial expression prediction using lstm encoded appearance-suppressed dynamics. IEEE Trans Affect Comput
4. Bargshady G, Zhou X, Deo RC, Soar J, Whittaker F, Wang H (2020) Ensemble neural network approach detecting pain intensity from facial expressions. Artif Intell Med 109:101954
5. Barsoum E, Zhang C, Ferrer CC, Zhang Z (2016) Training deep networks for facial expression recognition with crowd-sourced label distribution. In: Proceedings of the 18th ACM international conference on multimodal interaction, pp 279–283
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Optimal Hybrid Deep Learning-Aided Facial Emotion Detection and Classification Scheme to Identify Criminal Activities;2024-09-10
2. Emotion Recognition from Facial Expression Using Deep Learning Techniques;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05
3. EnhanceDeepIris Model for Iris Recognition Applications;IEEE Access;2024
4. Bioinspired Image Processing Enabled Facial Emotion Recognition Using Equilibrium Optimizer With a Hybrid Deep Learning Model;IEEE Access;2024
5. Smart Facial Recognition with Age Estimation, Gender Classification and Emotion Detection;Convergence of Machine Learning and IoT for Enabling the Future of Intelligent Systems;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3