A recognition–verification system for noisy faces based on an empirical mode decomposition with Green’s functions
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
http://link.springer.com/content/pdf/10.1007/s00500-019-04150-9.pdf
Reference62 articles.
1. Al-Baddai S, Al-Subari K, Tomé A, Volberg G, Hanslmayr S, Hammwöhner R, Lang E (2014) Bidimensional ensemble empirical mode decomposition of functional biomedical images taken during a contour integration task. Biomed Signal Process Control 13:218–236
2. Al-Baddai S, Al-Subari K, Tomé A, Solé-Casals J, Lang E (2016) A Green’s function-based bi-dimensional empirical mode decomposition. Inf Sci 348:305–321
3. Allwein EL, Schapire RE, Singer Y (2000) Reducing multiclass to binary: a unifying approach for margin classifiers. J Mach Learn Res 2:263–286
4. Bhuiyan S, Adhami R, Khan J (2008) A novel approach of fast and adaptive bidimensional empirical mode decomposition. In: IEEE international conference on acoustics, speech and signal processing ICASSP, pp 1313 –1316. https://doi.org/10.1109/ICASSP.2008.4517859
5. Bhuiyan S, Khan J, Adhami NA-ORR (2009) Study of bidimensional empirical mode decomposition method for various radial basis function surface interpolators. In: International conference on machine learning and applications. IEEE, pp 18–24
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Novel optimization-based bidimensional empirical mode decomposition;Digital Signal Processing;2023-03
2. Serial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serialization;Information Sciences;2021-12
3. Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal;Biomedical Signal Processing and Control;2021-08
4. Medical Image Retrieval Using Empirical Mode Decomposition with Deep Convolutional Neural Network;BioMed Research International;2020-12-26
5. Decomposition Methods for Machine Learning with Small, Incomplete or Noisy Datasets;Applied Sciences;2020-11-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3