Automatic segmentation and classification of liver tumor from CT image using feature difference and SVM based classifier-soft computing technique
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s00500-020-05094-1.pdf
Reference24 articles.
1. Bharathi A, Natarajan AM (2011) Efficient classification of cancer using support vector machines and modified extreme learning machine based on analysis of variance features. Am J Appl Sci 8:1295
2. Dankerl P, Cavallaro A, Alexey T, Costa M, Suehling M, Janka R, Uder M, Hammon M (2013) A Retrieval-based computer-aided diagnosis system for the characterization of liver lesions in CT scans. Acad Radiol 20(12):1526–1534
3. Das A, Das P, Panda SS (2018) Adaptive fuzzy clustering-based texture analysis for classifying liver cancer in abdominal CT images. Int J Comput Biol Drug Des 11(3):192–208
4. Depeursinge A, Kurtz C, Beaulieu C, Napel S, Rubin D (2014) Predicting visual semantic descriptive terms from radiological image data: preliminary results with liver lesions in CT. IEEE Trans Med Imaging 33(8):1669–1676
5. Gunasundari S, Suganya Ananthi M (2012) Comparison and evaluation of methods for liver tumor classification from CT datasets. Int J Comput Appl 39(18):46–51
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning for Effective Electronic Waste Management and Environmental Health;2024-09-13
2. DESMPA-Deep CNN: Double Exponential Smoothing Marine Predator Algorithm-Based Deep CNN for Liver Tumor Segmentation and Classification;International Journal of Pattern Recognition and Artificial Intelligence;2024-08-24
3. MAPFUNet: Multi-attention Perception-Fusion U-Net for Liver Tumor Segmentation;Journal of Bionic Engineering;2024-06-18
4. Feature extraction-based liver tumor classification using Machine Learning and Deep Learning methods of computed tomography images;Cogent Engineering;2024-04-25
5. Advancements in traditional machine learning techniques for detection and diagnosis of fatal cancer types: Comprehensive review of biomedical imaging datasets;Measurement;2024-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3