Knowledge transfer learning from multiple user activities to improve personalized recommendation
Author:
Funder
national natural science foundation of china
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s00500-022-07178-6.pdf
Reference48 articles.
1. Bansal T, Belanger D, McCallum A (2016) Ask the GRU: multi-task learning for deep text recommendations. In: RecSys 2016—Proceedings of the 10th ACM conference on recommender systems. pp 107–114. https://doi.org/10.1145/2959100.2959180
2. Cami BR, Hassanpour H, Mashayekhi H (2019) User preferences modeling using dirichlet process mixture model for a content-based recommender system. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2018.09.028
3. Chae DK, Kim SW, Lee JT (2019) Autoencoder-based personalized ranking framework unifying explicit and implicit feedback for accurate top-N recommendation. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2019.03.026
4. Chen X, Lei C, Liu D et al (2021) E-Commerce storytelling recommendation using attentional domain-transfer network and adversarial pre-training. IEEE Trans Multimed. https://doi.org/10.1109/tmm.2021.3054525
5. Cheng HT, Koc L, Harmsen J, et al (2016) Wide and deep learning for recommender systems. In: ACM International conference proceeding series
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SocialCU: Integrating Commonalities and Uniqueness of Users and Items for Social Recommendation;2024-01-25
2. Research on the Application of Knowledge Graph in Demand-Side Flexible Resource Profiling and Aggregation Techniques;Applied Mathematics and Nonlinear Sciences;2024-01-01
3. A Knowledge Recommendation Method Based on Transfer Learning;Lecture Notes on Data Engineering and Communications Technologies;2024
4. A multi-behavior recommendation method exploring the preference differences among various behaviors;Expert Systems with Applications;2023-10
5. Personalized Recommendation Evaluation of Credit Degree Based on New Hybrid Crow Search Algorithm for E-Commerce Live Industry Data Analysis;Journal of Sensors;2022-09-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3