An approach for optimizing multi-objective problems using hybrid genetic algorithms

Author:

Maghawry AhmedORCID,Hodhod Rania,Omar Yasser,Kholief Mohamed

Abstract

AbstractOptimization problems can be found in many aspects of our lives. An optimization problem can be approached as searching problem where an algorithm is proposed to search for the value of one or more variables that minimizes or maximizes an optimization function depending on an optimization goal. Multi-objective optimization problems are also abundant in many aspects of our lives with various applications in different fields in applied science. To solve such problems, evolutionary algorithms have been utilized including genetic algorithms that can achieve decent search space exploration. Things became even harder for multi-objective optimization problems when the algorithm attempts to optimize more than one objective function. In this paper, we propose a hybrid genetic algorithm (HGA) that utilizes a genetic algorithm (GA) to perform a global search supported by the particle swarm optimization algorithm (PSO) to perform a local search. The proposed HGA achieved the concept of rehabilitation of rejected individuals. The proposed HGA was supported by a modified selection mechanism based on the K-means clustering algorithm that succeeded to restrict the selection process to promising solutions only and assured a balanced distribution of both the selected to survive and selected for rehabilitation individuals. The proposed algorithm was tested against 4 benchmark multi-objective optimization functions where it succeeded to achieve maximum balance between search space exploration and search space exploitation. The algorithm also succeeded in improving the HGA’s overall performance by limiting the average number of iterations until convergence.

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3