Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
http://link.springer.com/content/pdf/10.1007/s00500-010-0674-z.pdf
Reference52 articles.
1. Aragón VS, Esquivel SC, Coello Coello CA (2008) Optimizing constrained problems through a T-cell artificial immune system. J Comput Sci Technol 8(3):158–165
2. Aydin I, Karakose M, Akin E (2011) A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Appl Soft Comput 11(1):120–129
3. Basu M (2005) A simulated annealing-based goal-attainment method for economic emission load dispatch of fixed head hydrothermal power systems. Electric Power Energy Syst 27(2):147–153
4. Brownlee J (2006) IIDLE: an immunological inspired distributed learning environment for multiple objective and hybrid optimisation. In: 2006 IEEE congress on evolutionary computation, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16–21
5. Bui LT, Nguyen MH, Branke J et al (2008) Tackling dynamic problems with multiobjective evolutionary algorithms. In: Knowles J, Corne D, Deb K (eds) Multi-objective problem solving from nature: from concepts to applications. Springer, Berlin, pp 77–91
Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The IGD-based prediction strategy for dynamic multi-objective optimization;Swarm and Evolutionary Computation;2024-12
2. A new framework of change response for dynamic multi-objective optimization;Expert Systems with Applications;2024-08
3. Scalable benchmarks and performance measures for dynamic multi-objective optimization;Applied Soft Computing;2024-07
4. Variational shadow quantum neural network based on immune optimisation algorithm;Quantum Information Processing;2024-04-23
5. Solving dynamic multi-objective optimization problems via quantifying intensity of environment changes and ensemble learning-based prediction strategies;Applied Soft Computing;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3