Prediction of reinforced concrete walls shear strength based on soft computing-based techniques

Author:

Tabrizikahou AlirezaORCID,Pavić Gordana,Shahsavani Younes,Hadzima-Nyarko Marijana

Abstract

AbstractThe precise estimation of the shear strength of reinforced concrete walls is critical for structural engineers. This projection, nevertheless, is exceedingly complicated because of the varied structural geometries, plethora of load cases, and highly nonlinear relationships between the design requirements and the shear strength. Recent related design code regulations mostly depend on experimental formulations, which have a variety of constraints and establish low prediction accuracy. Hence, different soft computing techniques are used in this study to evaluate the shear capacity of reinforced concrete walls. In particular, developed models for estimating the shear capacity of concrete walls have been investigated, based on experimental test data accessible in the relevant literature. Adaptive neuro-fuzzy inference system, the integrated genetic algorithms, and the integrated particle swarm optimization methods were used to optimize the fuzzy model’s membership function range and the results were compared to the outcomes of random forests (RF) model. To determine the accuracy of the models, the results were assessed using several indices. Outliers in the anticipated data were identified and replaced with appropriate values to ensure prediction accuracy. The comparison of the resulting findings with the relevant experimental data demonstrates the potential of hybrid models to determine the shear capacity of reinforced concrete walls reliably and effectively. The findings revealed that the RF model with RMSE = 151.89, MAE = 111.52, and $${R}^2$$ R 2 = 0.9351 has the best prediction accuracy. Integrated GAFIS and PSOFIS performed virtually identically and had fewer errors than ANFIS. The sensitivity analysis shows that the thickness of the wall $$({b_\mathrm{{w}}})$$ ( b w ) and concrete compressive strength $$({f_\mathrm{{c}}})$$ ( f c ) have the most and the least effects on shear strength, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3