A self-tuning least squares support vector machine for estimating the pavement rutting behavior of asphalt mixtures
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
http://link.springer.com/content/pdf/10.1007/s00500-018-3400-x.pdf
Reference34 articles.
1. Ahmed TM, Green PL, Khalid HA (2017) Predicting fatigue performance of hot mix asphalt using artificial neural networks. Road Mater Pavement Des 18:141–154
2. Alavi AH, Ameri M, Gandomi AH, Mirzahosseini MR (2011) Formulation of flow number of asphalt mixes using a hybrid computational method. Constr Build Mater 25(3):1338–1355
3. Amin SR, Amador-Jiménez LE (2017) Backpropagation neural network to estimate pavement performance: dealing with measurement errors. Road Mater Pavement Des 18(5):1218–1238
4. Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, New York
5. Cheng M-Y, Prayogo D (2016) Modeling the permanent deformation behavior of asphalt mixtures using a novel hybrid computational intelligence. Paper presented at the ISARC 2016—33rd international symposium on automation and robotics in construction, Auburn, USA
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Developing an improved extreme gradient boosting model for predicting the international roughness index of rigid pavement;Construction and Building Materials;2023-12
2. Regional implementation of the mechanistic empirical pavement design and analysis approach: Egyptian case study;Case Studies in Construction Materials;2023-07
3. Multi-population symbiotic organisms search algorithm for solving the construction resource leveling problem;CONSTRUCTION: THE FORMATION OF LIVING ENVIRONMENT: FORM-2022;2023
4. Improving asphalt mix design considering international roughness index of asphalt pavement predicted using autoencoders and machine learning;Construction and Building Materials;2022-12
5. Modeling resilient modulus of subgrade soils using LSSVM optimized with swarm intelligence algorithms;Scientific Reports;2022-08-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3