A hybrid traffic controller system based on flower pollination algorithm and type-2 fuzzy logic optimized with crow search algorithm for signalized intersections

Author:

Korkmaz ErsinORCID,Akgüngör Ali Payıdar

Abstract

AbstractIn this study, a hybrid traffic signal control (HTSC) system based on phase and time optimization was developed. The Flower Pollination Algorithm (FPA) approach was used for phase optimization, while Type-2 Fuzzy Logic, optimized with the Crow Search Algorithm (CSA), was utilized for time optimization. The hybrid system's performance was investigated using nine different traffic conditions and four different intersection geometries. The hybrid system was compared with three controller systems which are a fixed-time signal controller, a signal controller based on the FPA approach (FPA_TSC), and the optimized Type-1 fuzzy logic signal controller (Type-1 FL-TSC). The HTSC approach achieved the best performance with about 32% improvement over the fixed-time traffic controller and it showed 5% and 6% better performance than the FPA_TSC and Type-1 FL-TSC, respectively. Considering the performance of the new hybrid system, it is effective in minimizing delays and driver dissatisfaction occurring from signalization. It also contributes to the reduction of emissions and fuel consumption. The HTSC approach can be used as an alternative signal control method in the control of intersections with high traffic volume due to its fast and effective performance.

Funder

Kirikkale University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3