Determination of Customer Satisfaction using Improved K-means algorithm
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s00500-020-04988-4.pdf
Reference86 articles.
1. Alsaç A, Çolak M, Keskin GA (2017) An integrated customer relationship management and Data Mining framework for customer classification and risk analysis in health sector. In: IEEE International Conference on Industrial Technology and Management (ICITM), pp 41–46
2. Alvandi M, Fazli S, Abdoli FS (2012) K-mean clustering method for analysis customer lifetime value with LRFM relationship model in banking services. Int Res J Appl Basic Sci 3(11):2294–2302
3. Anitha P, Patil MM (2019) RFM model for customer purchase behavior using K-means algorithm. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2019.12.011
4. Ansari A, Riasi A (2016) Customer clustering using a combination of fuzzy c-means and genetic algorithms. Int J Bus Manag 11(7):59–66
5. Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, pp 1027–1035. Society for Industrial and Applied Mathematics
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Customer segmentation in e-commerce: a context-aware quality model for comparing clustering algorithms;Journal of Internet Services and Applications;2024-07-25
2. Unveiling Customer Segmentation Patterns in Credit Card Data using K-Means Clustering: A Machine Learning Approach;2023 International Conference on Modeling, Simulation & Intelligent Computing (MoSICom);2023-12-07
3. A Comparative Exploration of PCA Variants for Clustering Analysis;2023 Fourth International Conference on Information Systems and Software Technologies (ICI2ST);2023-11-22
4. New approach to solve Uncapacitated Facility Location Problem using Continuous Hopfield Network and modified K-means clustering;2023 9th International Conference on Optimization and Applications (ICOA);2023-10-05
5. A blockchain-based evaluation approach to analyse customer satisfaction using AI techniques;Heliyon;2023-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3