Nucleus image segmentation method based on GAN and FCN model
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s00500-021-06449-y.pdf
Reference32 articles.
1. Chen C, Dou Q, Chen H, Qin J, Heng P-A (2019) Synergistic image and feature adaptation: Towards cross-modality domain adaptation for medical image segmentation. Paper presented at the Proceedings of the AAAI Conference on Artificial Intelligence.
2. Cheng J, Tian S, Yu L, You H (2020) Multi-attention mechanism medical image segmentation combined with word embedding technology. Autom Control Comput Sci 54(6):560–571
3. Dar AS, Padha D (2019) Medical image segmentation: a review of recent techniques, advancements and a comprehensive comparison. Int J Comput Sci Eng Sci Technol Int J 7(7):114–124
4. Elbalaoui A, Fakir M (2019) Exudates detection in fundus images using mean-shift segmentation and adaptive thresholding. Comput Methods Biomech Biomed Eng Imaging vis 7(2):145–153
5. Fadzil AFA, Abd Khalid NE, Ibrahim S (2021) Amplification of pixels in medical image data for segmentation via deep learning object-oriented approach. Int J Adv Technol Eng Explor 8(74):82
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient artificial intelligence approaches for medical image processing in healthcare: comprehensive review, taxonomy, and analysis;Artificial Intelligence Review;2024-07-29
2. Shuff-BiseNet: a dual-branch segmentation network for pavement cracks;Signal, Image and Video Processing;2024-02-12
3. Scalable model for segmenting Cells’ Nuclei using the U-NET architecture;Multimedia Tools and Applications;2024-01-11
4. An EffcientNet-encoder U-Net Joint Residual Refinement Module with Tversky–Kahneman Baroni–Urbani–Buser loss for biomedical image Segmentation;Biomedical Signal Processing and Control;2023-05
5. Chaotic fitness-dependent quasi-reflected Aquila optimizer for superpixel based white blood cell segmentation;Neural Computing and Applications;2023-04-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3