Abstract
Abstract
The paper presents a hybrid ensemble of diverse classifiers for logo and trademark symbols recognition. The proposed ensemble is composed of four types of different member classifiers. The first one compares color distribution of the logo patterns and is responsible for sifting out images of different color distribution. The second of the classifiers is based on the structural tensor recognition of local phase histograms. A proposed modification in this module consists of tensor computation in the space of the morphological scale-space. Thanks to this, more discriminative histograms describing global shapes are obtained. Next in the chain, is a novel member classifier that joins the Hausdorff distance with the correspondence measure of the log-polar patches computed around the corner points. This sparse classifier allows reliable comparison of even highly deformed patterns. The last member classifier relies on the statistical affine moment invariants which describe global shapes. However, a real advantage is obtained by joining the aforementioned base classifiers into a hybrid ensemble of classifiers, as proposed in this paper. Thanks to this a more accurate response and generalizing properties are obtained at reasonable computational requirements. Experimental results show good recognition accuracy even for the highly deformed logo patterns, as well as fair generalization properties which support human search and logo assessment tasks.
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Reference36 articles.
1. Aherne FJ, Thacker NA, Rockett PI (1998) The Bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika 34(4):363–368
2. Bhattacharayya A (1943) On a measure of divergence between two statistical populations defined by their probability. Bull Calcutta Math Soc 35:99–110
3. Ballan L, Bertini M, Del Bimbo A, Jain A (2008) Automatic trademark detection and recognition in sport videos. ICME 2008
4. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: speeded up robust features. Comput Vis Image Underst 110(3):346–359
5. Bigun J (2006) Vision with direction. A systematic introduction to image processing and computer vision. Springer, Berlin
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献