Hybrid ensemble of classifiers for logo and trademark symbols recognition

Author:

Cyganek Bogusław

Abstract

Abstract The paper presents a hybrid ensemble of diverse classifiers for logo and trademark symbols recognition. The proposed ensemble is composed of four types of different member classifiers. The first one compares color distribution of the logo patterns and is responsible for sifting out images of different color distribution. The second of the classifiers is based on the structural tensor recognition of local phase histograms. A proposed modification in this module consists of tensor computation in the space of the morphological scale-space. Thanks to this, more discriminative histograms describing global shapes are obtained. Next in the chain, is a novel member classifier that joins the Hausdorff distance with the correspondence measure of the log-polar patches computed around the corner points. This sparse classifier allows reliable comparison of even highly deformed patterns. The last member classifier relies on the statistical affine moment invariants which describe global shapes. However, a real advantage is obtained by joining the aforementioned base classifiers into a hybrid ensemble of classifiers, as proposed in this paper. Thanks to this a more accurate response and generalizing properties are obtained at reasonable computational requirements. Experimental results show good recognition accuracy even for the highly deformed logo patterns, as well as fair generalization properties which support human search and logo assessment tasks.

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Reference36 articles.

1. Aherne FJ, Thacker NA, Rockett PI (1998) The Bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika 34(4):363–368

2. Bhattacharayya A (1943) On a measure of divergence between two statistical populations defined by their probability. Bull Calcutta Math Soc 35:99–110

3. Ballan L, Bertini M, Del Bimbo A, Jain A (2008) Automatic trademark detection and recognition in sport videos. ICME 2008

4. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: speeded up robust features. Comput Vis Image Underst 110(3):346–359

5. Bigun J (2006) Vision with direction. A systematic introduction to image processing and computer vision. Springer, Berlin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3