Applications of contractive-like mapping principles to fuzzy fractional integral equations with the kernel $$\psi $$-functions
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s00500-020-05115-z.pdf
Reference45 articles.
1. Agarwal RP, Lakshmikantham V, Nieto JJ (2010) On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal Theory Methods Appl 72:2859–2862
2. Agarwal RP, Arshad S, O’Regan D, Lupulescu V (2012) Fuzzy fractional integral equations under compactness type condition. Fract Calc Appl Anal 15:572–590
3. Ahmadian A, Salahshour S, Chan CS (2017a) Fractional differential systems: a fuzzy solution based on operational matrix of shifted Chebyshev polynomials and its applications. IEEE Trans Fuzzy Syst 25:218–236
4. Ahmadian A, Ismail F, Salahshour S, Baleanu D, Ghaemi F (2017b) Uncertain viscoelastic models with fractional order: a new spectral tau method to study the numerical simulations of the solution. Commun Nonlinear Sci Numer Simul 53:44–64
5. Alikhani R, Bahrami F (2013) Global solutions for nonlinear fuzzy fractional integral and integro-differential equations. Commun Nonlinear Sci Numer Simul 18:2007–2017
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A generalized fuzzy barycentric Lagrange interpolation method for solving two-dimensional fuzzy fractional Volterra integral equations;Numerical Algorithms;2024-03-26
2. A Lagrange spectral collocation method for weakly singular fuzzy fractional Volterra integro-differential equations;Soft Computing;2023-01-18
3. Hyers–Ulam stability for boundary value problem of fractional differential equations with κ‐Caputo fractional derivative;Mathematical Methods in the Applied Sciences;2022-06-30
4. An iterative method for solving linear fuzzy fractional integral equation;Soft Computing;2022-04-28
5. A survey on non-instantaneous impulsive fuzzy differential equations involving the generalized Caputo fractional derivative in the short memory case;Fuzzy Sets and Systems;2021-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3