Optimization of the different controller parameters via OBL approaches based artificial ecosystem optimization involving fitness distance balance guiding mechanism for efficient motor speed regulation of DC motor

Author:

Isen EvrenORCID,Duman SerhatORCID

Abstract

AbstractThis study proposes a new optimization approach, which is called as artificial ecosystem optimization algorithm with fitness-distance balance guiding mechanism by using opposite based learning methods (FDBAEO_OBLs) for the speed regulation of direct current (DC) motor. The performance of the proposed FDBAEO_OBL algorithm is tested in two different experimental studies. In the first experimental study, the proposed approach is tested in the CEC2020 benchmark test functions and the FDBAEO algorithm, which included the best OBL approach, is determined using non-parametric Wilcoxon and Friedman statistical analysis methods. Second, the parameters of proportional integral derivative (PID), tilt integral derivative (TID), proportional integral derivative with filter (PIDF), tilt integral derivative with filter (TIDF), fractional-order proportional integral derivative (FOPID), fractional-order proportional integral derivative with filter (FOPIDF), proportional integral derivative with fractional-order filter (PIDFF) and fractional-order proportional integral derivative with fractional-order filter (FOPIDFF) controller structures to be used in DC motor closed loop speed control are determined with FDBAEO_OBL, and the performances of the controllers are investigated. Integral absolute error (IAE), integral time absolute error (ITAE), integral time squared error (ITSE) and integral squared error (ISE) performance indices are used as the objective function of the operation process in which the control parameters are determined. According to the comparative step response results of the controller structures, the four best controller structures for DC motor speed regulation are determined. The performances of these controllers are examined under different simulation conditions and according to the results obtained, it is seen that the best controller structure is FOPIDFF. The FDBAEO_OBL algorithm, which is used in both benchmark test functions and DC motor speed regulation, shows an effective, durable and superior performance in finding the optimal solution values during the optimization.

Funder

Bandirma Onyedi Eylul University

Publisher

Springer Science and Business Media LLC

Reference74 articles.

1. Ahmed M, Magdy G, Khamies M, Kamel S (2022) Modified TID controller for load frequency control of a two-area interconnected diverse-unit power system. Int J Electr Power Energy Syst 135(107528):1–20

2. Amyal FA, Szamel L, Hamouda M (2023) An enhanced direct instantaneous torque control of switched reluctance motor drives using ant colony optimization. Ain Shams Eng J 14(5):11–15

3. Aras S, Gedikli E, Kahraman HT (2021) A novel stochastic fractal search algorithm with fitness-distance balance for global numerical optimization. Swarm Evol Comput 61(100821):1–15

4. Arun S, Manigandan T (2021) Design of ACO based PID controller for zeta converter using reduced order methodology. Microprocess Microsyst 81(103629):1–11

5. Åström KJ, Hägglund T (1984) Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20(5):645–651

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3