Abstract
AbstractIn this study, we present a novel methodology that can be used to generate parametric probability weighting functions, which play an important role in behavioral economics, by making use of the Dombi modifier operator of continuous-valued logic. Namely, we will show that the modifier operator satisfies the requirements for a probability weighting function. Next, we will demonstrate that the application of the modifier operator can be treated as a general approach to create parametric probability weighting functions including the most important ones such as the Prelec and the Ostaszewski, Green and Myerson (Lattimore, Baker and Witte) probability weighting function families. Also, we will show that the asymptotic probability weighting function induced by the inverse of the so-called epsilon function is none other than the Prelec probability weighting function. Furthermore, we will prove that, by using the modifier operator, other probability weighting functions can be generated from the dual generator functions and from transformed generator functions. Finally, we will show how the modifier operator can be used to generate strictly convex (or concave) probability weighting functions and introduce a method for fitting a generated probability weighting function to empirical data.
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献