Automatic detection of weeds: synergy between EfficientNet and transfer learning to enhance the prediction accuracy

Author:

Duong Linh T.ORCID,Tran Toan B.,Le Nhi H.,Ngo Vuong M.ORCID,Nguyen Phuong T.ORCID

Abstract

AbstractThe application of digital technologies to facilitate farming activities has been on the rise in recent years. Among different tasks, the classification of weeds is a prerequisite for smart farming, and various techniques have been proposed to automatically detect weeds from images. However, many studies deal with weed images collected in the laboratory settings, and this might not be applicable to real-world scenarios. In this sense, there is still the need for robust classification systems that can be deployed in the field. In this work, we propose a practical solution to recognition of weeds exploiting two versions of EfficientNet as the recommendation engine. More importantly, to make the learning more effective, we also utilize different transfer learning strategies. The final aim is to build an expert system capable of accurately detecting weeds from lively captured images. We evaluate the approach’s performance using DeepWeeds, a real-world dataset with 17,509 images. The experimental results show that the application of EfficientNet and transfer learning on the considered dataset substantially improves the overall prediction accuracy in various settings. Through the evaluation, we also demonstrate that the conceived tool outperforms various state-of-the-art baselines. We expect that the proposed framework can be installed in robots to work on rice fields in Vietnam, allowing farmers to find and eliminate weeds in an automatic manner.

Funder

Università degli Studi dell’Aquila

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3